

	Overview	5
Chapt	ter 1: Basic Skills Review	
1.1	Integers and Real Numbers	6
1.2	Ratios, Rates, Proportions, and Percents	10
1.3	Proportional Reasoning	14
1.4	Solving Problems with Proportional Reasoning	20
Chapt	ter 2: Algebraic Expressions	
2.1	Laws of Exponents	
2.2	Algebraic Expressions with Exponents	
2.3	Extending Algebraic Skills	
2.4	Applying Algebraic Skills	38
Chapt	ter 3: Polynomials and Equations	
3.1	Operations with Polynomials	42
3.2	Expanding, Simplifying, and Factoring Polynomials	46
3.3	Applying Polynomials	52
3.4	Solving First-degree Equations	56
3.5	Solving and Rearranging First-degree Equations	60
3.6	Solving Problems with Equations	66
Chapt	ter 4: Linear Relations	
4.1	Graphs and Relations	70
4.2	Linear and Non-linear Relations	74
4.3	Direct and Partial Variations	80
4.4	Applying Linear Models	86
4.5	Working with Statistics	90
4.6	Reading and Interpreting Graphs	96

Chapter 5: Analytic Geometry

5.1	Slope	100
5.2	Solving Problems Involving Rate of Change	106
5.3	Equations of Lines	
5.4	x- and y-Intercepts and Points of Intersection	116
5.5	Solving Problems with Linear Equations	122
Chapt	ter 6: Properties of Two-dimensional Shapes	
6.1	Angles of Polygons	126
6.2	Properties of Interior and Exterior Angles	
6.3	Angle Properties of Parallel Lines	136
6.4	Applying Geometry Knowledge	142
Chapt	ter 7: Measurement Relationships in Three-dimensional Figu	ures
7.1	The Pythagorean Theorem	146
7.2	Perimeters and Areas of Composite Figures	150
7.3	Solving Problems Involving Perimeters and Areas	156
7.4	Finding Surface Areas and Volumes of Prisms	160
7.5	Finding Surface Areas and Volumes of Pyramids	166
7.6	Solving Problems Involving Prisms, Pyramids, Cylinders, and Spheres	172
Cumulative Review		177
Handy Reference		191
Answers		201

Algebraic Expressions

Laws of Exponents

Example

Write each expression as a single power with a positive exponent.

1.
$$2^8 \times 2^5 = 2^{8+5}$$
 Keep the base and add the exponents.

2.
$$2^8 \div 2^5 = 2^{8-5}$$
 Keep the base and subtract the exponents.

3.
$$(2^8)^5 = 2^{8 \times 5}$$
 Keep the base and multiply the exponents.

4.
$$2^{-8} = \frac{1}{2^8}$$

Write each expression as a single power with a positive exponent.

①
$$10^8 \div 10^5 =$$

$$4 3^7 \times 3^3 =$$

$$(7)$$
 4^{-2} =

$$0 8^3 \times 8^4 =$$

$$5^2 \div 5^0 \times 5^3 =$$

$$(7^2)^3 \times 7^2 =$$

Hinz

Laws of Exponents (a \neq 0)

$$a^{0} = 1$$
 $a^{m} \times a^{n} = a^{m+1}$
 $a^{1} = a$ $a^{m} \div a^{n} = a^{m-1}$
 $a^{-p} = \frac{1}{p}$ $(a^{m})^{n} = a^{m \times n}$

(p is an integer.) (m and n are natural numbers.)

①
$$6^5 \times 6^2 = 6$$
 $= 6$

②
$$6^5 \div 6^2 = 6^{-1} = 6^{-1}$$

$$(6^5)^2 = 6^{-1} = 6^{-1}$$

(5)
$$5^6 \div 5 =$$
 (6) $(6^3)^3$

$$5^{\circ} \div 5 =$$

$$(7^2)^4 =$$
 9 $(8^{-3})^2 =$

①
$$(6^{-1})^2 =$$

①
$$(6^{-1})^2 =$$
 ② $3^4 \div 3 =$

$$\Theta = 9^3 \times 9 \div 9^2 =$$

$$(10^{-2})^4 \times (10^3)^2 = \underline{ }$$

Write each expression as a base of 2 or 3 with a positive exponent.

$$243^2 =$$

$$4^7 =$$

Hint

=
$$(3^2)^5$$
 Think: $9 = 3^2$
Replace 9 by 3^6

$$(a^{m})^{n} = a^{m \times n}$$

Write each expression as a single power. Then evaluate each power.

$$(7^2)^3 \times 7^4 \div 7$$

$$(49)^3 \div 7^0$$

$$9^8 \div 3^2 \times \frac{3^{-6}}{2^3 + 2^0}$$

$$\frac{64^4 \div (2^7 \times 2^6)}{5^2 - 3^2} = \underline{ }$$

$$\frac{(5^6)^2 \div (5^3 \times 5^2)}{5^3 \div 125} = \underline{ }$$

$$8 \quad \frac{54 - 3^3}{9^6 \div 3^9 \times 81} =$$

Write each expression as powers with positive exponents.

39
$$5^3 \times (\frac{2}{5})^2$$

$$40 20^2 \times \frac{1}{4^2}$$

$$= 5^3 \times \frac{2}{5}$$

=
$$(4 \times 10^{-3})^2 \times \frac{1}{4^2}$$

$$= 5^{-} \times 2^{-}$$

$$= 4^{11} \times \frac{1}{4^2}$$

Laws of Exponents

(b
$$\neq$$
 0, m – integers)

$$(a \times b)^m = a^m \times b^m$$

e.g.
$$6^5 = (2 \times 3)^5$$

= $2^5 \times 3^5$

$$\left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{b^{m}}$$

e.g.
$$\left(\frac{3}{5}\right)^2 = \frac{3^2}{5^2}$$

$$@ 8^{-2} \times 24^3 =$$

$$43 \frac{14^2}{2^3}$$

$$4^2 \times 28^{-2} =$$

Write each number in scientific notation.

This decimal should be greater than or equal to 1 and less than 10.

$$49 395 \times 10^3$$

Evaluate each expression without a calculator. Then write the answer in scientific notation.

$$9 \times 10^{-5} \times 8 \times 10^{2} = \underline{\hspace{1cm}}$$

$$6 \times 10^8 \times 50 \times 10^{-2} =$$

$$70 \times 10^8 \times 200 \times 10^{-5} =$$

$$69 4 \times 10^{-3} \times 5 \times 10^{-6} =$$

Solve the problems. Write the answers in scientific notation.

- The surface area of the Earth is about 510 000 000 km². About 71% of the surface is covered by oceans and the rest is covered by land.
 - a. What is the surface area of the Earth's oceans?
 - b. What is the surface area of the Earth's land?
- © The volume of water flowing over Horseshoe Falls is about 343 200 000 L/min in peak flow season.
 - a. What is the volume of water in a second?
 - b. What is the volume of water in an hour?
- 60 The distance between the sun and the Earth is about 1.5×10^8 km. The speed of light is 3×10^8 m/s.
 - a. What is the distance between the sun and the Earth in m?
- b. How long does it take for light to travel from the sun to the Earth?
- The population of Canada in 2005 was about 3.2 x 10⁷. There were about 77% of Canadians living in cities and towns.
 - a. How many Canadians lived in cities and towns in 2005?
- ____
- b. The population of Canada in 2007 was about 4% more than that in 2005. What was the population in 2007?

The radius of the Earth is about 6.3×10^3 km. Find its volume in terms of τ .

Volume of a Sphere

 $=\frac{4}{3}\pi r^3$, where r = radius